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What is a movement syndrome?

Q Rev Biol. 2004 Sep;79(3):241-77.

Behavioral syndromes: an intergrative overiew.
Sih A1, Bell AM, Johnson JC, Ziemba RE.

A behavioral syndrome is a suite of correlated behaviors expressed either within a given
behavioral context (e.g., correlations among foraging behaviors in different habitats) Or across different

contexts (e.g., correlations among feeding, antipredator, mating, aggressive, and dispersal behaviors).

A movement syndrome is a suite of correlated movement patterns expressed either
within a given ecological context or across different contexts.

In humans: behavioral syndromes allow for the identification of personality types
(e.g. assertive, bold, friendly, deceptive)

In animals: movement syndromes will allow for the identification of both personality and
movement types

As with behavioral syndromes, movement syndromes can be integrative in linking the
nature (genetics) and nuture (environment) aspects of individual (physiology, behavior) and
communal (ecology, evolution) Processes.
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Identifying behaviors at different scales

FMEs and related stereotypical behavioral sequences
* raw data: part or whole body kinematics (particularly accelerometer)

* Input data: bounded raw data sequences, or extracted metrics
(e.g. overall dynamic body acceleration: ODBA)

- FME output: categorization of a point located in a region of
processed input data space (region democarted using clustering or
machine learning methods)

Movement syndrome
- raw data: whole or part of a lifetime movement pathway (plus
possible internal state or external environment data)
- input data: CAMS (duration, mix, sequencing, auxilliary env. data)
» Syndrome output: categorization of a point located in a region of

processed input data space (region demarcated using: state
identification methods—hidden Markov models or HMM:; machine

learning methods)




FME/short CAM | | | Accuracy 95% confidence
. . Machine learning algorithm Mean s.d. interval
Ma‘ChIne Iea‘rnlng ANN 84.81 1.92 84.27, 85.36
CART 8595 2.02 85.38, 86.53
LDA 86.74 1.27 86.38, 87.10
Orr RF 90.88 1.46 ©0.47,91.30
' SVM 87.01 1.61 86.55, 87.47

machine.
AN=50 runs.

ANN, artificial neural network; CART, classification and regression trees;
LDA, linear discriminant analysis; RF, random forest; SVM, support vector
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Fortman Roe

Usmg tri-axial acceleratlon data to identify
behavioral modes of free-ranging animals:
general concepts and tools illustrated for
griffon vultures

Ran Nathan, Orr Spiegel, Scott Fortmann-Roe, Roi Harel,
Martin Wikelski, Wayne M. Getz

Journal of Experimental Biology 2012 215:986-996;
doi: 10.1242/jeb.058602
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Pattern (Machine) Learning Algorithms

Linear discriminant analysis (LDA)
* reduces dimensionality while minizing variance
- parametric assumption of Gaussian distribution of classes
» typically avoids overfitting (i.e. produces fewer more general

categories |
There categories

Two categories three separator equations
one separator equation




Support vector machines (SVM)
- essentially binary: group of interest versus the rest
* maximize distance of group from separating hyperplane
* repeat several times: for different groups to get multiple groups
- computationally intensive
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Classification and Regression Trees (CART)

- can handle continuous or categorical data ( St )
* based on a set of hierachical decision rules
» can lead to overfitting (too many types) “ /}\ Yes
- use pruning to reduce overfitting < Jtoz9 >——
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Decision Forest

Random Forests (RF)

» ensemble of decision classifiers

- each classifer similar to CART

» output classification is the mode

- computationally intensive, but
more reliable than CART

k (Output)



Artificial neural networks (ANNSs)
» Simplest is three layer perceptron: input, hidden, output.
* More complicated have several hidden layers
* Deep learning uses outputs from several different hidden
layers rather than just the final hidden layer

3-layered perceptron with 2 inputs, IE sum all the
k hidden units, and 1 output Inputs
Hidden Layer pass the sum
1 k[t through a ramp
Inputs S ‘I —,_ E (or logistic)
“ Output function

(single)
N\ S aa S |/ rarve:
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Deep learning using multilayer perception networks

DS o5 This is in feedforward
;;-;/g;»f*?%”’uh‘ mode after training has
SRS, AR 775 occured has occurred:
INPUT: (0) ‘>\ \': .
e computations are purely
broken (11 0 algebraic
ntc pixels Layer1 L2 L3 L4 5
Pixel Edges Combinations Features
values dentified of edges identified
detected identified

Training requires back
propogation algorithm
which turns the network
into an adaptive
dynamical system that
changes over time

First hidden layer: partitions
space using infinite surfaces



Identifying behavioral states needed to extract CAMs

Jouwrnal of Animal Feology 2016, 85, 69 84 doi: 10.1111/1365-2656.12379

SPECIAL FEATURE: STUCK IN MOTION? RECONNECTING QUESTIONS AND TOOLS IN
MOVEMENT ECOLOGY

What is the animal doing? Tools for exploring
behavioural structure in animal movements

Eliezer Gurarie"?*, Chloe Bracis®, Maria Delgado®®, Trevor D. Meckley®, llpo Kojola’” and
C. Michael Wagner®

Table 1. Summary table of four broad categories of behavioural movement analysis methods. The four methods implemented in this
paper and the most directly relevant references are bold faced. All of the entries in the last category can be considered multstate random
walks, hidden Markov models or state space models

Catcgory Mcthod References

Metric-based Fritz, Said & Weimerskirch (2003), Laidre er al. (2004)

Nams & Bourgeors (2004): Tremblay, Roberts & Costa (2007)

Fractal analysis

Classification and segmentation

Phcnomenological time-scries analysis

Mechanistic movement modelling

Tortuosity measures

First passage time (FP1)
Residence time (RT)
Penalized contrasts

Bayesian partitioning (BIP'MM)
k-cluslering

RT (segmentation step)
Autocorrclation functions
Change point analvsis (BCPA)

Wavelet
Multistate random walk (MRW)

Ignoring location error

Accounting for error

Bovet & Benhamou (198R); Benhamou (2004)
Fauchald & T'veraa (2003)

Barraquand & Benhamou (2008)

Lavielle (2005), Calenge (2006)

Calenge (2006)

van Moorlter e/ al. (2010)

Barraquand & Benhamou (2008)

Boyce er al. (2010)

Gurarie, Andrews & Laidre (2009), Gurarie (2013)
Kranstauber er af. (2012)

Polansky er ai. (2010)

Morales ef al. (2004)

Forester et al. (2007), Langrock er al. (2012)
Patterson er al. (2008), McClintock er al. (2012)
Jonsen et al. (2013), Breed er al. (2012)




Hidden Markov Models (HMMs) for identifying
behavioral states (needed to extract CAMS)

Q=4q1q92...9N
A= aildi12...q0ux1 ... Aun

O=0103...07

B = bi(o,)

90:9F

a set of N states

a transition probability matrix A, each a;; rep-
resenting the probability of moving from state ¢
to state j, s.t. Z?‘zl aij=1 Vi

a sequence of 7' observations, each one drawn
from a vocabulary V = v{,v;,...,vy

a sequence of observation likelihoods, also
called emission probabilities, cach expressing
the probability of an observation o; being gen-
erated from a state :

a special start state and end (final) state that arc
not associated with observations, together with

(ransition probabilities apiagz ...dp, out of the
start state and ararF .. .a,F 1nto the end state



Hidden Markov Models (HMMs) for identifying
behavioral states (needed to extract CAMSs)

Figure 9.3 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, and the observations (drawn from the
alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

Transition

orobabilities A -]

2

start,

6 5
5 ()
’ @@
a 4 '
B, : B,
Observation

P(1 | HOT) 2 ‘ali P(1 | COLD 5
P(2|HOT)| = | .4 I|keI|hopds PEZlCOLDi = | .4
P(3 | HOT) 4 (emission P(3 | COLD) A

probablities) B

|1 DT icRIR] A hidden Markov model for relating numbers of ice crcams caten by Jason (the
observations) to the weather (H or C, the hidden variables).



Journal of Animal Ecology 2009, 78, 11131123 doi: 10.1111/§.1365-2656.2009.01582
Toby A. Patterson?*, Marinelle Basson', Mark V. Bravington® and John S. Gunn’

Classifying movement behaviour in relation to
environmental conditions using hidden Markov models

Two states: resident or migratory
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Slmple metrICS reveal common Briana Abrahms , Dana P. Seidel, Eric Dougherty, Elliott L. Hazen, Steven J. Bograd, Alan M. Wilscr,
. J. Waldon McNutt, Daniel P. Cesta, Stephen Blake, Justin S. Brashares and Wayre M. Gerz
movement syndromes across diverse
. ovement Ecology 2017 5:12
vertebrate taxa and environments httos://doi.org/ 0.1186/540462-017-0104-2 € The Author(s). 2077

Data
1. All one-hour frequency resolution, except
1.5 hours for the albatross (repeated at 3
hour resolution)
2. Metrics calculated over a range of time

Briana

Abrahidy 5y scales: hour, day, month, and lifetime of
| trajectory
Species number of
individuals M etri CS
Afri buffal 5 : :
Af::zzz e,l;pi,zm 3 1. Mean turning angle correlation (TAC)
African wild dog 13 2. Residence time (RT): within fixed radius
Black-backed jackal 15 3. Mean time to return (T2R): to within fixed
g;‘g‘;";‘r‘f sea lion 155 radius after leaving for more than 12 & 24
hours
Galapagos 8 _ _
Galapagos tortoise 8 4. Mean volume of intersection (VI): between
Lion 9 monthly 95% kernel density home ranges
y y g
: ‘?'ephat:“ seal 195 5. Maximum net-squared-displacement
Soringbo o (MNSD): scaled by smallest MNSD for

White-backed 10 Species.




Simulated archetypes
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PC2 (18.7% explained var.)

pv]

o

Cluster analysis (VWard's method)
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A Marine
X Simulation
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PC1 (51.5% explained var.)



Table 2. Summary of 130 individuals within 13 species analyzed into cluster classifications.

Species Nindividuals Migratory Central place Nomadic Territorial
African buflalo 5 - - 2 3
African clephant 8 - 1 4 3
Alfrican wild dog 13 - 9 1 3
C I u S t e r Black-backed jackal 13 - 15 - -
Calilorma sea lion 13 1 14 - -
Cheelah 5 - - - 5
D e n d I’Og I"a m Galapagos albalross 8 - 8 - -
Galapagos lorloise 8 4 4 - .
Lion 9 - | | 7
N. elephant seal 13 15 - - -
Plains zebra 9 - - 6 3
Springbok 10 2 4 4 -
White-backed vuliure 10 - 2 3 5
I :I‘: Ll L
§ 22{? in% §
= #25§5§ve
158500538 haRESRE




Wavelet analysis
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Elephants of Samburu

£y 3
é.,,-f; F 3

Wittemyer

Leo Polansky




Frequency (cycles/day)

Elephant movement patterns: wavelet analysis

Disentangling the effects of forage, social rank, and
risk on movement autocorrelation of elephants using
FOUI‘ier and WaVEIEt analyses 19108-19113 | PNAS | December 9,2008 | vol. 105 | no.49

Gearge Wittemyer®P<1.2 Leg Polansky®2, lain Douglas-Hamilton“?, and Wayne M. Getzb-®
rg Y y g yn
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Dominant individuals made regular forays to water on a 24 hour
cycle, subordinate individuals visited water on 2-4 day cycles,
depending on the season
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Why we expect
syndromic groups to

Three
strategy
foraging
model

evolve

Individual Level
(within patch:  to 1)

Citation: Getz WM, Salter R, Lyons AJ, Sippk
Swezey N (2015) Panmictic and Clonal Evolution on
a Single Patchy Resource Produces Polymorphic
Foraging Guilds. PLoS ONE 10(8): e0133732.

doi:10.1371/jocurnal.pone.0133732
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