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Local Convex Hull (LoCoH)
HR and UD construction

Using slides from
a presentation by Andy Lyons
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LoCoH Algorithm

4. Draw local hulls
around all points
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African Buftalo in Klaserie
Private Nature Park: data
from 3 herds over a season

MC = (maximum convex polygon construction)
simple
overestimates home range
ignores densities (no isopleths)

Kernel Methods

produces isopleths

smooths irregularities

ad-hoc boundaries (95 percentile)
how to choose smoother parameter h




LoCoH Methods

* |Local convex hulls: k-1 nearest

neighbors of each point

* Take union for home range

* Jake progressive unions from
smallest to largest k-LoCoH to

obtain isopleths

relatively simple
follows Irregular data and boundaries

How to choose k?
Type | vs |l error trade




Minimum Covering of Spurious Holes

Northern Herd  Focal (Central) Herd  Southern Herd

Nﬁ 300 1 Pink — 95% h; gy kernel
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* aggregations on boundaries
* holes in the data
* multicore data
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Analysis of Yellowstone wolf data




Study area — Yellowstone NP

30m Digital Elevation Model with hillshade



Wolf observations

wolves are clearly avoiding step slopes



First 3 decile isopleths (30% of observations)




First 6 decile isopleths (60% of observations)




First 9 decile isopleths (90% of observations)




All 10 decile isopleths (100% of observations)
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"~ New visualization tools
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Ditffusion

distance O

For a random walk where:

A= constant step length

N = number of steps between
two selected points

5(N)=M/N

For a dataset with variable
step length but roughly
constant sampling interval:

B
S(At)=d Al
V1

d = median step length
T = median sampling frequency




Time-Scaled Distance (TSD)

D, = Ax,” +Ay,” +58(Ar,)’

Yy

_ At
2 2 r B
Axl.j + Ayij + sd .

where s 1s a dimensionless scaling factor that controls the degree to which
diffusion distance influences Euclidean distance (s 2 0)
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Time Use Space

important
seasonal
resources

iInfrequently used
resources, search
areas

year-long
resources

revisitation



T-LoCoH Hull Metrics

Density

area

number of nearest neighbors used in
hull construction

number of enclosed points

Time Use

revisitation rate (number of separate visits
where visits are differentiated by an inter-
visit gap period)

mean visit duration (mean number of
occurrence petr visit)

revisitation and mean visit duration
normalized by hull area

Time

hour of day of the parent point
month of the parent point
date of the parent point

Elongation / Movement Phase

eccentricity of a bounding ellipsoid
constructed around the hull

perimeter / area ratio

average speed of nearest neighbors used
in hull construction (where the speed of a
point sampled at time t is measured from
t-1 to t+1).

average speed of all points enclosed by
the hull

standard deviation of the speed of
nearest neighbor points

standard deviation of the speed of
enclosed points



T-LoCoH General Workflow

1. Select a value of s based on the time scale of
interest

2. Create density isopleths that do a “good job”

representing the home range
€.2., NO SPUrious CroSSOVets

3. Compute hull metrics for elongation and/or time-
use

4. Visualize isopleths and/or hull points

5. Interpret and/or plot against environmental
variables



Simulated Data

1.Single virtual animal moves
between 9 patches

2.constant step size and sampling
interval

3.unbounded random walk within
each patch for a predetermined
# steps

4.directional movement to the next
patch

5.duration and frequency
of patch use varied

m Total Pts

pnZ_mp5.n2993.2011-03-30.201 20202




Simulated Data

1.Single virtual animal moves R ————
between 9 patches
2.constant step size and sampling

interval
3unbounr~|nr~| ranAAarm wiall, wwnthin

leals 1. spatially overlapping
-3 but temporally separate
4 directi resource edges
patch
5.duration and frequency
of patch use varied

|

2. gradient of
directionality

3 varied frequency
of use
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Isopleth level indicates the proportion of total points enclosed along a
gradient of point density (red highest density, light blue lowest).
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Isopleth level indicates the proportion of total points enclosed along a
gradient of point density (red highest density, light blue lowest).
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Isopleth level indicates the proportion of total points enclosed along a
gradient of point density (red highest density, light blue lowest).
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Isopleth level indicates the proportion of total points enclosed along a
gradient of point density (red highest density, light blue lowest).
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Isopleth level indicates the proportion of total points enclosed along a
gradient of point density (red highest density, light blue lowest).
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Isopleth level indicates the proportion of total points enclosed along a
gradient of point density (red highest density, light blue lowest).
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Isopleth level indicates the proportion of total points enclosed along a
gradient of point density (red highest density, light blue lowest).
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Isopleth level indicates the proportion of total points enclosed along a
gradient of point density (red highest density, light blue lowest).
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Isopleth level indicates the proportion of total points enclosed along a
gradient of point density (red highest density, light blue lowest).
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Isopleth level indicates the proportion of total points enclosed along a
gradient of point density (red highest density, light blue lowest).
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Isopleth level indicates the proportion of total points enclosed along a
gradient of point density (red highest density, light blue lowest).
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Simulated Data:
Elongation Isopleths

Elongation Isopleths: Bounding Ellipse Eccentricity Elongation Isopleths: Parimeter-Area Ratio

Isopleth levels indicate the proportion of total points enclosed along a gradient of elongation (red most elongated, light-
blue least). Hulls sorted by eccentricity of bounding ellipse (left) and perimeter / area ratio (right). Both did a good job
identifying the areas of directional movement. One can even see trails within patches when the individual was told ‘it's

time to go'.




Simulated Data:
Revisitation Isopleths

PN2_Mp5.n2999.2011-09-30.2012-02-02 Time Use Isopleths: Revisitation
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Hulls sorted by number of separate visits (inter-visit gap = 24 time steps). Hulls most revisited were found in the
center patch (revisited more than any other patch) and the “superhighway” between patch five and seven. Also the
‘foyer’ area of patches.




Simulated Data:
Duration Isopleths

PN mp5.n2999.2011-09-00 20120202 Time Use |sopleths: Duration
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Hulls sorted by mean number of locations per visit (inter-visit gap = 24 time steps). Hulls with the longest duration
were found around the edges of patches where the animal was programmed to ‘bounce back’ and got stuck. Also
patch 3 where the animal remained the longest during a single visit.
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Male Springbok:
Null model fit

Male SpflﬂgbOﬁ Cistributicns of Pairwisa Distances vs. Delta-t
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On left, maps of the male springbok in Etosha National Park, Namibia. The colors of the points reflect temporal continuity;
tan lines are roads, and yellow polygons are salt pans. On the right, box plots show the distribution of the net displacement
of all pairs of points sampled At apart (x-axis), with the predicted Gaussian diffusion distance from the random walk null
model specified in Equation 2 overlaid in red.




Male Springbok:
Density Isopleths

Utihzation Distributions: Male
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Male Springbok:
Hulls in Time-Use Space
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Male Springbok:
Hulls in Time-Use Space
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Hull Parent Points Colored by Time Use Regions

Revisitation Rate vs. Duration of Visit s .
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duration of visit (mnlv)

hour of day

Revisitation Rate vs. Duration of Visit

Hull Parent Points Colored by Time Use Regions

The scatterplots of the hull parent points date vs. hour of day provide clues about what
these regions in time-use space represent behaviorally. The red and pink regions of time-
use space appear to be ‘core night time area’ from Oct thru Jan. The blue hulls are visited
frequently during mid-day but never for very long — a travel route to water? Green hulls were
neither revisited nor used for very long - perhaps searching for greener pastures or run off
by another male?
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Female Springbok:
Null model fit

Female Springbok Cistributicns of Pairwisa Distances vs. Delta-t
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On left, maps of the female springbok in Etosha National Park, Namibia. The colors of the points reflect temporal
continuity; tan lines are roads, and yellow polygons are salt pans. On the right, box plots show the distribution of the net
displacement of all pairs of points sampled At apart (x-axis), with the predicted Gaussian diffusion distance from the
random walk null model specified in Equation 2 overlaid in red.




Female Springbok:
Null model fit

Female Springbok Cistributicns of Pairwisa Distances vs. Delta-t
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On left, maps of the female springbok in Etosha National Park, Namibia. The colors of the points reflect temporal
continuity; tan lines are roads, and yellow polygons are salt pans. On the right, box plots show the distribution of the net
displacement of all pairs of points sampled At apart (x-axis), with the predicted Gaussian diffusion distance from the
random walk null model specified in Equation 2 overlaid in red.




Female Springbok:
Density Isopleths

Utilization Distributions: Female
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Female Springbok:
Hull revisitation rate and duration over time
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Plots of hull revisitation rate and visit duration over time for the female springbok. Separate visits defined by an inter-visit
gap period of 1 day. Values have been 'jiggled' by 0.1 to better see point density.




Female Springbok:

Directional Routes

Map of directional routes for the female springbok derived from connecting the parent points of temporally contiguous hulls
with a perimeter area ratio value in the top 35%. Perimeter area ratios have been smoothed with a temporal averaging
function and scanning window of one time step. Blue dots are known water points.




Female Springbok:
Hour of day vs. Speed of enclosed pts
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Conclusions

Ancillary variables such as time can be incorporated into

home range methods in such as a way as to extend the
range in behavioral questions

T-L.LoCoH shows promise in developing spatial
distributions for movement phase and time use

One-click solutions remain elusive

Future Directions

= Model diffusion distance from data

= More sophisticated pattern detection

= Hulls provide a platform for environmental variables,
interactions between individuals

= More assistants for parameter selection

= Hcological applications




